Neural networks with multidimensional transfer functions

نویسنده

  • Charalampos Tsitouras
چکیده

We present a new type of neural network (NN) where the data for the input layer are the value x in R, the vector y in R(m ) associated to an initial value problem (IVP) with y'(x)= f(y(x)) and a steplength h. Then the stages of a Runge-Kutta (RK) method with trainable coefficients are used as hidden layers for the integration of the IVP using f as transfer function. We take as output two estimations y*, y;* of IVP at the point x+h. Training the RK method at some test problems and counting the cost of the method under the coefficients used, we may achieve coefficients that help the method to perform better at a wider class of problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation and classification with RBF-type Neural Networks using flexible local and semi-local transfer functions

Structure of incremental neural network (IncNet) is controlled by growing and pruning to match the complexity of training data. Extended Kalman Filter algorithm and its fast version is used as learning algorithm. Bi-radial transfer functions, more flexible than other functions commonly used in artificial neural networks, are used. The latest improvement added is the ability to rotate the contou...

متن کامل

Flexible Transfer Functions with Ontogenic Neural Networks

Transfer functions play a very important role in learning process of neural systems. This paper presents new functions which are more flexible than other functions commonly used in artificial neural networks. The latest improvement added is the ability to rotate the contours of constant values of transfer functions in multidimensional spaces with only N − 1 adaptive parameters. Rotation using f...

متن کامل

Approximation and classification with RBF-type Neural Networks using flexible local and semi-local transfer functions1

Structure of incremental neural network (IncNet) is controlled by growing and pruning to match the complexity of training data. Extended Kalman Filter algorithm and its fast version is used as learning algorithm. Bi-radial transfer functions, more flexible than other functions commonly used in artificial neural networks, are used. The latest improvement added is the ability to rotate the contou...

متن کامل

ارائه مدلی جهت پیش بینی بیماری دیابت با استفاده از شبکه عصبی

Introduction: Meta-heuristic and combined algorithms have a great capability in modelling medical decision making. This study used neural networks in order to predict Type 2 Diabetes (T2D) among high risk individuals. Methods: This study was   an applied research. Data from 545 individuals (diabetic and non-diabetic), in Diabetes Clinic of Hamedan University of Medical Sciences, we...

متن کامل

Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods

In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...

متن کامل

Complex - Valued Neural Network in Image Recognition : A Study on the Effectiveness of Radial Basis Function

A complex valued neural network is a neural network, which consists of complex valued input and/or weights and/or thresh olds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in image and visio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 13 1  شماره 

صفحات  -

تاریخ انتشار 2002